[2] involute Σ iii (bevel gear design system) **English version**

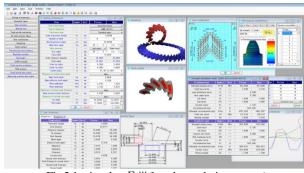


Fig.2.1 involute Σ iii (bevel gear design system)

2.1 Abstract

involute Σ i (bevel gear) has functions such as bevel gear dimensions, strength (steel, resin), assembly chart, axial load, tooth surface modification, transmission error, tooth surface evaluation, FEM analysis, tooth profile data and measurement data, so it helps the users to design efficiently and accurately. Fig.2.1 shows the entire screen.

2.2 Software structure

Table 2.1 shows the structure of involute Σ iii (bevel gear). \bigcirc in the table is the basic function of the software and Ois the optional function.

Table 2.1 Software structure

No.	Item	Page	Structure
1	Dimension	2.4	0
2	Accuracy	2.5	0
3	Bearing load	2.22	0
4	Drawing	2.6	0
5	Meshing drawing	2.8	0
6	Tooth shape rendering	2.9	0
7	Backlash changes	2.12	0
8	Ball height	2.13	0
0	Strength calculation (steel)	2 10	
9	JGMA403-01, 404-01	2.19	0
10	Strength calculation(resin)	2.21	0
11	Strength calculation(Steel)	2.20	
11	AGMA2003-B97	2.20	0
10	Gear modification (Involute, lead)	2.10	
12	& contact pattern	2.11	O
13	Transmission error analysis	2.15	0
14	Surface evaluation	2.23	0
15	FEM tooth shape stress analysis	2.24	0
16	Tooth data output (straight gear)	2.14	0
17	Tooth data output (Spiral + Zerol)	2.14	0
18	Tooth data output (Osaka seimitsu)	2.16	0
19	measured data output (Carl Zeiss)	2.16	0

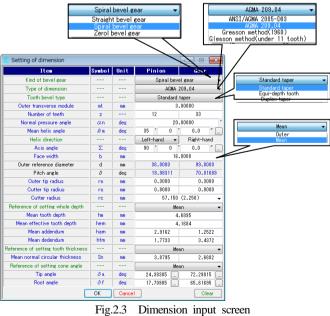
2.3 Dimension setup (Property)

Types of bevel gears and dimension classification are shown below. Fig.2.2 shows an example gear setting screen.

- (1) Bevel gear type
 - Straight bevel gear, spiral bevel gear, zerol

- (2) Dimension classification
 - (2.1) Straight bevel
 - standard
 - · Parallel summon
 - ANSI/AGMA 2005-D03
 - AGMA 208.03 (minimum # of teeth is 7)
 - · Gleason automotive application

(2.2) Spiral bevel


- ANSI/AGMA 2005-D03
- · AGMA 209.04
- Gleason (1960)
- Gleason (less than 11 teeth)
- (2.3) Zerol bevel gear
 - ANSI/AGMA 2005-D03
 - · AGMA 202.03

(3) Tooth inclination corresponds to standard taper, parallel tooth, duplex taper, TRL (AGMA).

Property	—					
-Default of dimensio	on standard					
Kind of bevel gear	Spiral bevel gear 🛛 👻					
Type of dimension	ANSI/AGMA 2005-D03 👻					
-Kind of strength c	alculation					
IGMA403-01(1976), JGMA404-01(1977)						
Plastic(Lewis)						
ANSI AGMA	A 2003- B97					
	DK Cancel Default					
Fig.	.2.2 Property					

2.4 Dimension

Standard value can be automatically entered by inputting module and number of teeth. The shaft angle is standard 90° and the inp ut range corresponds to $\Sigma = 60^{\circ} \sim 160^{\circ}$ and the crown gear (pitch cone angle less than 90° max).

Dimension input screen

As shown in Fig.2.3, by setting module, number of teeth, and shaft angle, the standard value is displayed based on standard dime nsion. Also, input operation has the following functions.

(1) In the property, gear type is selected, but it can be changed

by gear dimension as shown in Fig.2.3.

(2) Setting criteria for tooth depth, tooth thickness and cone angle are based on outer end or central standard.

(3) Tooth tip and toot conical angle can be switched between hexa decimal and decimal as shown in Fig.2.4.

(4) Fig.2.5 shows the numerical value of the outer end, but middle part, inner end part value can be also displayed. Fig.2.6 Result-2 shows the contact ratio and etc.

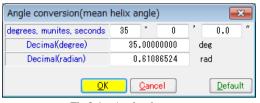


Fig.2.4 Angle change

Cear dimension				
Dimension 1 Dimension 2				
Item(outer) -	Symbol	Unit	Pinion	Gear
Transverse module	mt	mm	3	.0000
Cone distance	R	mm	52	.6711
Reference diameter	d	mm	36.0000	99.0000
Tip diameter	da	mm	42.6382	100.0729
Root diameter	df	mm	32.0700	96.2300
Whole depth	h	mm	5.6226	5.6225
Effective tooth depth	he	mm	5	.1015
Addendum	ha	mm	3.5318	1.5698
Dedendum	hf	mm	2.0909	4.0528
Clearance	с	mm	0.5210	0.5211
Circular pitch	ср	mm	9	. 42 48
Normal tooth thickness	St	mm	5.5841	3.8406
Tooth thinning for normal tooth t	ft	mm	0.0000	0.0000
Chordal tooth thickness	sj	mm	4.3888	3.0255
Chordal height	hj	mm	3.6581	1.5777

Fig.2.5 Dimension result-1

Cear dimension					
Dimension 1 Dimension 2					
Item	Symbol	Unit	Pinion	Gear	
Base cone angle	δb	deg	18 43 53.3	62 1 14.4 "	
Addendum angle	θa	deg	4 23 59.8	2 16 23.7	
Dedendum angle	θf	deg	2 * 16 23.7	4 23 59.8	
Total dedendum angle	Σδ	deg	6 * 40	23.5 "	
Axial distance between tooth tip	×b	mm	14.6160 4.8710		
Considerble90° bevel gear ratio	m90	mm	2.7500		
Virtual number of teeth	Z٧	mm	23.2303 175.6793		
from cone apex to outer tip	Х	mm	48.2930 16.524		
Outer backlash	BL	mm	0.0000		
Transverse contact ratio	εα	mm	1.0861		
Overlap ratio	εβ	mm	1.4016		
Total contact ratio	εγ	mm	1.7731		
Tooth angle	ta	min	193.2650	195.0407	
Material angle	$\theta \times$	deg	87 * 43 36.3 *	85 86 0.2 "	
Material angle	θу	deg	70 * 1 * 0.8	19 * 58 7 59.2 "	

Fig.2.6 Dimension result-2

2.5 Accuracy

Fig.2.7 shows accuracy of bevel gear (JIS B 1704:1978).

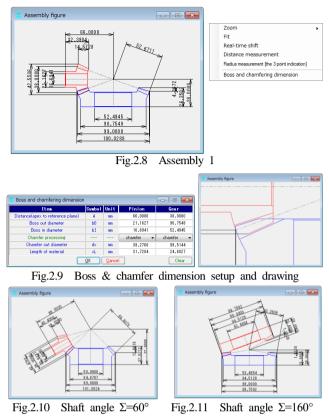

🚡 Bevel gear accuracy JIS B 1704 📃 🖃 🗾 🗠					
Item	Symbol	Unit	Pinion	Gear	
Accuracy grade			3 🗸	3 🕶	
Single pitch deviation(±)	ft	μm	27	28	
Pitch valiation	ftu	μm	35	36	
Total cumulative pitch deviation(±)	Ft	μm	105	110	
Radial run-out	fr	μm	48	67	

Fig.2.7 Bevel gear accuracy (JIS B 1704)

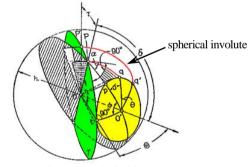
2.6 Assembly drawing

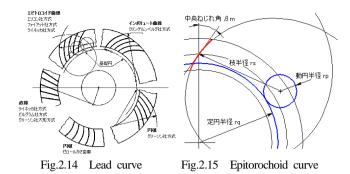
As shown in Fig.2.8 to 2.11, users can set assembly distance an d boss diameter to plot. As drawing feature, there are enlargeme nt, distance measurement, etc. In Fig.2.8, when chamfering is set, a shape with a chamfered edge will be created at the small end (Fig.2.9). Fig.2.10 shows an example of a pair of shaft angles of

 60° and Fig.2.11 shows an assembled view of an axis angle of 160° .

2.7 Bevel gear tooth shape

The tooth profile generated by involute Σ iii (bevel gear design) is the spherical involute as shown in Fig.2.12, and the root is the spherical trochoid curve. Therefore, even gears with few teeth such as differential bevel gears show correct meshing.




Fig.2.12 spherical involute

The tooth profile calculation condition is shown in Fig.2.13. Als o, spiral bevel gear's lead (Fig.2.14) can select "circular arc", invol ute, "epitorochoid", "epui-lead"(Fig.2.15) ", or " Equal lead ".

Tooth profile calculation ite		- • •		
Item(tooth profile)	Symbol	Pinion	Gear	
Number of fillet divisions	vuf	30	30	
Number of involute divisions	vui	50	50	
Number of rounding devisions	vur	15 15		
Number of tip circle divisions	vut	10	10	
Number of lead divisions	hul	18	18	
Type of lead curve	Circular arc 🗣 Circular arc			
OK				
			ute choid lead	

Fig.2.13 Tooth shape calculation dimension

AMTEC INC. www.amtecinc.co.jp

2.8 Meshing drawing

There are features such as enlargement, distance measurementfor the front tooth form, and the outer end, the center, and the inner end part are displayed.

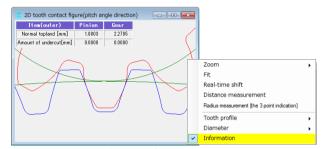


Fig.2.16 Tooth shape (outer end), pitch conical angle direction

2.9 Tooth shape rendering

Tooth profile rendering is shown in Fig.2.17. The display angle and size of the gear can be changed on control form. In addition, to confirm tooth contact, angle conversion is shown in Fig.2.18. As pinion can be moved in "horizontal" or "vertical", meshing con tact line with errors can be easily understood.

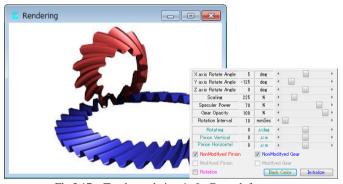


Fig.2.17 Tooth rendering-1 & Control form

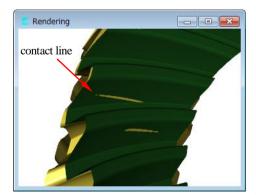


Fig.2.18 Tooth rendering-2 (modified tooth example)

2.10 Involute/lead modification (optional)

In case of involute, lead modification, modification can be given as shown in Fig.2.19 ~ 2.23. In Fig.2.21, users can enter a numbe r of designated points to be modified (maximum = 50), or users c an also enter it as an arc pattern as shown in Fig.2.22.

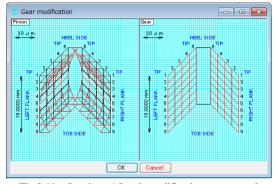


Fig.2.19 Involute / Lead modification topo graph

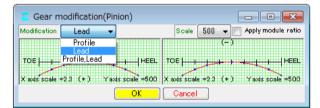
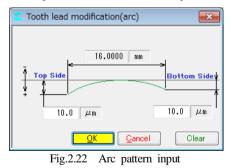



Fig.2.20 Lead modification example

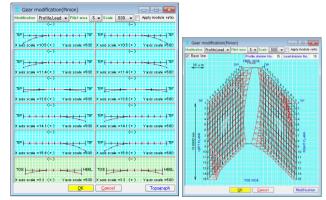
Fig.2.21 Lead modification input-1

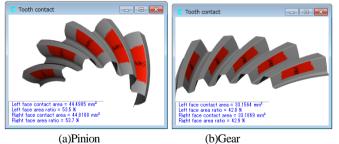
One line of modification for involute and lead is shown as a ex ample in Fig.2.23.

꿑 Gear n	nodification(Pi	nion)			- • •
Modification	Profile,Lead 👻	Fillet area	- Scale	500 👻 🗖	Apply module ratio
	(-)			(-)	
		† TIF	TIP		4 4 4 4 1 1 TIF
X axis scale	=105(+) Ya	xis scale =500	X axis scal	e =105(+)	Yaxis scale =500
	(-)			(-)	
TOE		HEEL	тое	<u>_, , , ,</u>	
X axis scale	=2.3 (+) Ya	xis scale =500	X axis scale	≥=23 (+)	Yaxis scale =500
		OK	Cancel		Topograph

Fig.2.23 Involute/Lead input

Fig.2.24 shows an example of modification and topo graph whe n tooth profile cross sectional division is set to 5 and lead is 1. I n the topo graph, it is possible to set the number of divisions of t he tooth profile and the lead up to 50 each.




Fig.2.24 Involute/Lead (bias) modification & topo graph example

2.11 Contact pattern (optional)

It displays contact pattern (including non-modified tooth profile) of gears with involute/lead modification. In the setup menu in Fig. 2.25, it is possible to set the mounting error and maximum contact clearance (paint thickness). For example, the modification given in Fig.2.19 can be shown in terms of contact pattern in Fig.2.26.

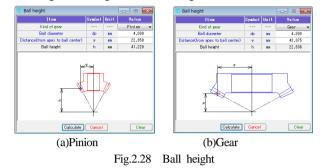
Horizontal setting deviation ∠H μm 0.0 Vertical setting deviation ∠Y μm 0.0 Axis angle setting deviation ∠Z deg 0.00000 Offset setting deviation ∠E μm 0.0 Contact maximum clearance c μm 3.0 No. of rotation angle divisions vui 50 Number of involute divisions hul 50 Number of lead divisions hul 50 Rotational direction CCW(right flank) CW(right flank)	Item	Symbol	Unit	Yalue
Axis angle setting deviation Δ Σ deg 0.00000 Offset setting deviation Δ E μm 0.0 0.0 Contact maximum clearance c μm 3.0 3.0 No. of rotation angle divisions(/1 pitch) 50 50 Number of involute divisions vul 50 Number of lead divisions hul 50 Rotational direction 50 50	Horizontal setting deviation	⊿H	μm	0.0
Offset setting deviation ΔE μm 0.0 Contact maximum clearance c μm 3.0 No. of rotation angle divisions(/1 pitch) 50 Number of involute divisions vul 50 Number of lead divisions hul 50 Rotational direction 50 50	Vertical setting deviation	⊿۷	μm	0.0
Contact maximum clearance c //m 3.0 No. of rotation angle divisions(/1 pitch) 50 Number of involute divisions vul 50 Number of lead divisions hul 50 Rotational direction hul 50	Axis angle setting deviation	ΔΣ	deg	0.00000
No. of rotation angle divisions(/1 pitch) 50 Number of involute divisions vui 50 Number of lead divisions hul 50 Rotational direction 50 50 50	Offset setting deviation	⊿E	μm	0.0
Number of involute divisions vui 50 Number of lead divisions hul 50 Rotational direction 50	Contact maximum clearance	с	μm	3.0
Number of lead divisions hul 50 Rotational direction	No. of rotation angle divisions(/1 pitch)			50
Rotational direction	Number of involute divisions	vui		50
	Number of lead divisions	hul		50
BOTH(both flank)	Rotational direction			

Fig.2.25 Contact pattern setup

(a)Pinion

Fig.2.26 Contact pattern

2.12 Backlash change


Fig.2.27 shows the change in the backlash of the gear with the tooth involute/lead modification in Fig.2.24. From Fig.2.27, the kic k-out of this gear is observed as 0.2 µm.

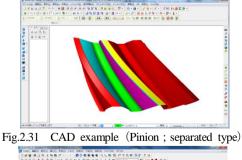
Rotational angle(Pinion)	-10.80	deg	Kickout	0.0000	00
Backlash variation	0.0002	nn	Scale	5382.617	0
0.004-		+			
0.003-					
0.002					
0.003 0.002 0.001					
§ 0.000				-	
5 -0.001 - -0.002 - 5 -0.003 -					
-0.002					
B-0.000 -					
-14 -12 -10 -	8 - 6 - 4 -	2 0	2 4 6	8 10 12	14
	otational Ar	sle of I	Pinion(degre	e)	
n					

Fig.2.27 Backlash change

2.13 Ball height

In order to control tooth thickness, a ball is placed near tooth width center, and then ball height (only straight bevel) is calculated. It is suitable for tooth thickness control during manufacturing. An example of the ball height of bevel gear is shown in Fig.2.28.

2.14 Tooth profile data output (optional)


Tooth profile with involute/lead modification can be output as C AD data. By setting tooth profile file condition in Fig.2.29, 3D-IG ES file can be output as shown in Fig.2.31 (3D-DXF can also be output). Also, meshing tooth shaped 3D-IGES and 2D-DXF file c an be output as shown in Fig.2.30. In Fig.2.30, a number of tooth profile divisions can be changed as well.

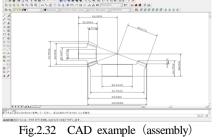
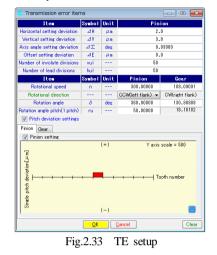
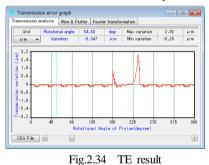


Fig.2.29 Tooth profile setup


Fig.2.30 Tooth shape profile setup (division number)


2.15 Transmission error analysis (optional)

Below is an example of analysis of rotational transmission error (TE) at no load by using the tooth form from Fig.2.19. The moun ting error is given as shown in Fig.2.33 and 5 µm is given as Pin ion's pitch error (only tooth number 6).

Calculation results of TE, wow flutter, Fourier analysis are show n in Fig.2.34 ~ 2.36. In the wow flutter of Fig.2.35, this graph w aveform can be checked as sound (Sound on the upper right of th e graph **)**.

As shown in Fig.2.37 and Fig.2.38, pitch error can be input wit h maximum value or tooth error individually.

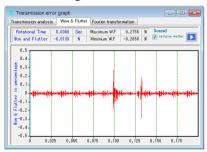
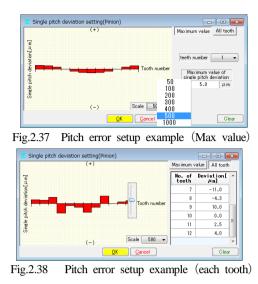



Fig.2.35 wow flutter

Fig.2.36 Fourier analysis

2.16 Tooth shape measured data output (optional)

There are two kinds of measurement data output function; Carl Zeiss 3D measuring machine and Osaka precision machine measuring machine.

(1) Outline of measurement data output for 3D measuring machine (Carl Zeiss)

Fig.2.39 shows the measurement data setting screen. By setting the tooth shape division number, tooth surface measurement clearance amount and measurement reference distance, this feature outputs the measurement point coordinates and normal vector to the file.

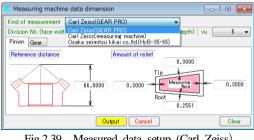


Fig.2.39 Measured data setup (Carl Zeiss)

(2) Outline of measurement data output of Osaka Precision Machine measuring machine.

By setting measurement data from Fig.2.40, measurement nominal data can be output to a file. "The measuring machine (HyB-35 · 65) can measure precisely because tooth surface is measured with "line" instead of "point". By measuring up to the edge of the tooth with a line rather than a lattice point like a 3D measuring machine, delicate shape errors can be captured for noise and vibration (Reference: Osaka Precision Machinery Co., Ltd. Catalog).

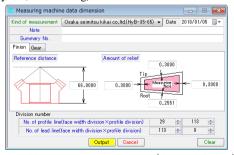
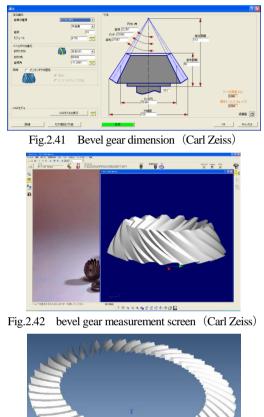



Fig.2.40 Measured data setup (Osaka Seimitsu)

2.17 Measurement example 1

Tooth profile data and measurement vector for bevel gear is exp orted from involute Σ iii (bevel gear design) to bevel gear measurem ent software (*GearPro-Bevel*¹) of Carl Zeiss's 3D measuring mach ine) as shown in Fig.2.41 ~ 2.43.

* 1): "GearPro is a product of Carl Zeiss IMT GmbH, Germany"

 $m6, z_1=11, z_2=45, \alpha=20^\circ, \Sigma=90^\circ$ Fig.2.43 Measurement point & vector data (Carl Zeiss)

2.18 Measurement example 2

Fig.2.44 shows a measurement example from Osaka precision machine measuring machine (HyB-35 \cdot 65) by using tooth profile data and bevel vector on bevel gear measurement from involute Σ iii(bevel gear design).

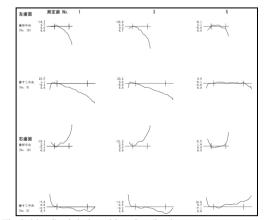


Fig.2.44 Straight bevel involute/lead measurement example

2.19 Gear strength calculation (JGMA)

It is calculate based on JGMA 403-01:1976 (bending), 404-01:1977 (contact pressure).

(1) Power setting: Torque setting (MN \cdot m, kN \cdot m, N \cdot m, N \cdot m, N \cdot m, kgf \cdot m, kgf \cdot cm, gf \cdot cm) and rotational speed, presence / absence of crowning settings are shown in Fig.2.45.

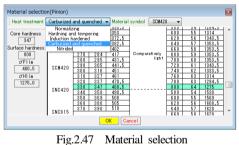


Fig.2.45 Power setup

(2) Material setting: Allowable stress of materials can be set in Fig.2.46. For material selection, allowable stress value can be determined based on the hardness reference information from Fig.2.47. In addition, material symbols, allowable stress values (σ_{Flim} , σ_{Hlim}) and hardness can be entered arbitrarily.

(3) Coefficient setting: Fig.2.48 shows the coefficient setting scree n for Strength calculation. Coefficients can be either selected from

the support forms, or directly typed in specific numbers. Fig.2.49

shows strength calculation result.

Fig.2.48 Strength calculation coefficient

🚡 Strength calculation resu	Strength calculation result [JGMA 403-01,JGMA 404-01]						
Item(bending)	Symbol	Unit	Pinion	Gear			
Allowable bending stress	σFlim	MPa	480.5000	480.5000			
Tooth form factor	YF		2.2539	2.2169			
Load distribution factor	Yε		0	.8266			
Helix angle factor	Yβ		0	.7500			
Life factor	KL		1.0000	1.0000			
Size factor	KF×		1.0000	1.0000			
Dynamic factor	Kv		1	.0885			
Circumferential load	Ft	N	1637.6201				
Allowable circumferential load	Ftlim	N	6218.9695	6322.6838			
Tooth root stress	σF	MPa	126.5284	124.4529			
Bending strength	Sft		3.7976	3.8609			
Item(pitting)	Symbol	Unit	Pinion	Gear			
Allowable pitting stress	σHlim	MPa	1275.0000	1275.0000			
Zone factor	ZH		2.1307				
Life factor	KHL		1.0000	1.0000			
Contact ratio factor	Zε		0.9092				
Work hardening factor	ZW		1.0000	1.0000			
Dynamic factor	Kv		1	.0885			
Circumferential load	Fc	N	1637	.6201			
Allowable circumferential load	Folim	N	1716.1767	1716.1767			
Contact stress	σH	MPa	1245.4772	1245.4772			
Pitting strength	Sfc		1.0480	1.0480			

Fig.2.49 Strength calculation result

2.20 Gear strength calculation (AGMA) (optional)

It is calculated based on AGMA 2003-B97:1997, by selecting strength calculation "AGMA 2003-B 97" in the property of Fig.2.2. Here, an example of Strength calculation for the gear from Fig.2.51 is shown in Fig.2.52 to 2.56.

Fig.2.50 Dimension

emension Material				
Item	Symbol	Unit	Pinion	Gear
Power	Р	kli 🗸	1000.	0000
Torque	T1,2	N-m 👻	7958.1000	22282.6800
Rotational speed	n1,2	min-1	1200.0000	428.5714
Number of overloaded times		min-1	1	1
Nominal tangential load per mesh	Ft	N	83173.	7963
Tangential velocity	vet	m/s	14.	1361
Rotational direction			Normal rotation 10000000	
Number of load cycles	nL			
Using condition of gear			Uniform	
Load distribution modification value	Kab		1.0 ((both ends supprted(both	
Application factor	KA		1.000 1.000 1.000	
Safety factor for pitting	SH			
Safety factor for bending	SF			
Contact reliability factor	ZZ		1.000	
Bending reliability factor	Yz		1.000	
Temperature factor	Kθ		1.000	
Effective face width	b	mn		
Surface roughness	Ra1,2	μm	6.00 6.00	
AGMA accuracy grade			9 (JIS= 3) 👻	9 (JIS= 3) 🗖
Crowning			with crown	ing 🗖

Fig.2.51 Strength dimension

	Item	Symbol	Unit	Yal	ue	
Gear ratio		mG		2.	800	
Tar	ngential velocity	vet	m/s	14.	136	
0	ynamic factor	Κv		1.	315	
F	ace load factor	KΗβ		1.056		
Pitting	Bending(Pinion conca	ve) Bend	ing(Pinio	on convex) Life		
	Item	Symbol	Unit	Pinion Gear		
	Size factor	Zx		0.930		
Le	ad modify factor	Zxc		1.500		
0	ieometry factor	ZI		0.112		
	Life factor	ZNT		1.320 1.404		
Work hardening factor		Z₩		1.	000	
	Contact stress	σH	MPa.	1403.436		
Permissible contact stress		σHP	MPa.	1821.096	1937.545	
Allowable transmission power(Unit)		Pazu	k₩	1683.711	1905.923	
Allowable transmission power		Paz	k₩	1683.711	1905.923	
Allow	able pitting strength	SFc		1.684	1.906	

Fig.2.52 Strength calculation result (stress)

	Item	Symb	ol Unit	Val	ue	
	Gear ratio	mG		2.	2.800	
Tangential velocity		vet m/s		14.	14.136	
Dynamic factor		Κv		1.	.315	
Face load factor		KH (3	1.	.056	
Pitting	Bending(Pinion conca	ve) E	Bending(Pini	on convex) Life		
	Item	Symb	ol Unit	Pinion	Gear	
Size factor		YX	YX 0.		.613	
Helix angle factor		Yβ		1.	.061	
Life factor		YNT		1.018	1.036	
Geometry factor		YJ		0.200	0.223	
Bending stress		σF	MPa	188.782	169.628	
Permissible bending stress		σF	P MPa	386.705	393.857	
Allowable	transmission power(Unit)	Pay	u kW	2048.355	2321.819	
Allowab	le transmission power	Pay	∕ k₩	2048.355	2321.819	
Allow	able bending strength	SFt		2.048	2.322	

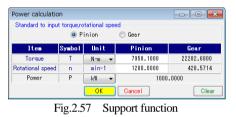
Fig.2.53 Strength calculation result (bending: Pinion 凹)

Item	Symbol	Unit	Ya	ue
Gear ratio	mG		2	.800
Tangential velocity	vet	m/s	14	.136
Dynamic factor	Κv		1	.315
Face load factor	KH β		1	.056
T1 (D11111)	Q	11-14	Distant and	0
Item(Pitting)	Symbol	Unit	Pinion 1.017	Gear 1.017
Expected life factor	CL		1.017	1.017
		Unit cycs	1.017 7.575E+08	1.017 7.575E+0
Expected life factor	CL		1.017	1.017
Expected life factor Expected number of load cycles	CL	 cycs	1.017 7.575E+08	1.017 7.575E+0
Expected life factor Expected number of load cycles Expected life time	CL N L	 cycs hrs	1.017 7.575E+08 1.052E+04	1.017 7.575E+0 2.946E+0
Expected life factor Expected number of load cycles Expected life time Item(Bending)	CL N L Symbol	 cycs hrs	1.017 7.575E+08 1.052E+04 Pinion	1.017 7.575E+0 2.946E+0 Gear

Fig.2.54 Life calculation result

ometry factor I Geometry factor J (Pinion concave)	Geometr	y factor	J (Pinion convex)	
Item	Symbol	Unit	Pinion	Gear
Geometry factor for Pitting resistance	ZI			. 112
Mean cone distance	Rm	mm	284.	. 487
Addendum angle	θα1,2	deg	3.471	1.786
Mean addendum	ham1,2	mm	14.645	6.257
Location constant	k'		0.	. 139
Mean transverse diametral pitch	Pm	mm	0.	.078
Outer transverse circular pitch	Pe	mm	47.	. 124
Mean normal base pitch	Pmbn	mm		.851
Mean normal circular pitch	Pmn	mm	32.	.831
Mean transverse pitch radius	rmpt1,2	mm	101.602	796.562
Mean normal pitch radius	rmpn1,2	mm	151.417	1187.109
Mean normal base radius	rmbn 1,2	mm	142.285	1115.518
Mean normal outside radius	rmne 1,2	mm	166.062	1193.366
Length of mean normal addendum action			33.835	17.944
Length of action in mean normal section	gαn		51.780	
Transverse contact ratio	εα		1.191	
Intermediate variable			0.	.363
Face contact ratio			1.764	
Modified contact ratio			2.128	
Mean base spiral angle		deg	32.615	
Length of action within the contact ellipse	e n	mm	65.	.228
ean normal profile radius of curvature at pitch circ	,0 m1,2	mm	48.979	383.992
ssumed locations of critical point on tooth for pitti	уI		-0.	. 408
	εηI	mm	65.	.223
istance along path of action in mean normal sectio	gyo		13.	.705
Profile radius of curvature at point fI	ρ 1,2	mm	62.684	370.287
Relative radius of profile curvature	ρyo	mm	53.	.609
Length of the line of contact	gc	mm		.860
Inertia factor	Zi		1.	.000
	ε'ηI	mm	66.	698

Fig.2.55 Geometry factor (I)


AMTEC INC.

www.amtecinc.co.jp

ieometry factor I	Geometry factor J (Pinion concave)	Geometr	y factor	J (Pinion convex)		
	Item	Synbol	Unit	Pinion	Gear	
Geon	etry factor for bending	YJ1,2		0.200	0.223	
	Mean dedendum	hfm1,2	mm	8.869	17.257	
Assumed locations of critical point on tooth for ben		уJ			0.000	
Length of action within the contact ellipse		εn	mm	6	65.228	
Determination of point of load application for max		y8		81.882	19.947	
Distance from n	ean section to center of pressure	60 [°]	mm	7.822	7.822	
Sum of gear an	d pinion mean normal pitch radii	Σrmpn	mm	188	8.526	
Normal pressure angle at point of load application		αL1.2	deg	24.777	19.368	
One half of an	gle subtended by normal circular	ζh1,2	deg	2.868	0.403	
Normal pressure	angle at point of load application	∞h1,2	deg	21.909	18.964	
Distances from pitch circle to point of load applica		⊿ryo1,2	mm	1.945	-7.568	
Tool or cutter tip edge radii used to produce		,2 ao 1,2	mm	0.800	0.800	
Tooth fillet radii in mean section at the tooth root		rmf1,2	mm	1.208	1.025	
Tooth strength factor		XN 1,2		12.717	16.631	
Tooth form factors excluding stress concentra		Y1.2		0.663	0.874	
Stress concentration and stress correction factor		Yf 1,2		2.399	2.697	
Empirical constant used in stress correction formula		Н		0.180		
Empirical exponent	t used in stress correction formula	L			0.150	
Empirical exponent	t used in stress correction formula	м			0.450	
Tooth form	n factors for gear and pinion	YP,YG	mm	0.276	0.324	
		€'ηJ		6	6.679	
	Load sharing ratio	εNJ			0.936	
	Inertia factor	Yi			1.000	
Projected lengt	of instantaneous line of contact	eK	mm	5	6.322	
Toe increm	ents of face width (effective)	⊿b'i1,2	mm	36.210	36.210	
Toe in	crements of face width	⊿bi1,2	mm	36.210	36.210	
Heal increm	ents of face width (effective)	⊿b'e1,2	mm	17.111	17.111	
Heal i	ncrements of face width	⊿be1,2	mm	17.111	17.111	
E	ffective face width	ь'1,2	mm	76.244	74.382	

Fig.2.56 Geometry factor (J: Pinion 凹)

Fig.2.57 shows a support function screen that calculates the relationship between power and torque.

2.21 Gear strength calculation (resin gear)

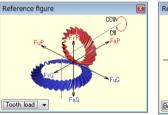
The bending strength of the resin gear is calculated by Lewis equation, and the tooth surface strength is calculated by Hertz's equation by selecting "Resin" in the property of Fig.2.2. Here, an example of Strength calculation for the straight bevel gear from Fig.2.58 is used as shown in Fig.2.59 and Fig.2.60.

The allowable stress value of resin material is experimental value by considering temperature and life. The applicable materials are M90, KT20, GH25, nylon. Other materials can be calculated by M90 ratio coefficient (ratio to common physical property value).

Item	Symbol	Unit	Pinion	Gear
Kind of bevel gear			Straight be	velgear 🖣
Type of dimension			Standard	
Tooth bevel type				
Outer transverse module	mt	mm	1.00000	
Number of teeth	z		18 33	
Normal pressure angle	۵n	des	20.00000	
Mean helix angle	βm	des	0 * 0 ' 0.0	
Helix direction			v	
Axis angle	Σ	deg	90 * 0	0.0 "
Face width	b	m	5.6385	
Outer reference diameter	d	nn	18.0000 33.000	
Pitch angle	δ	des	28.61046 61.385	
Outer tip radius	ra	mm	0.1000 0.1000	
Cutter tip radius	ro	mm	0.1200 0.1200	
Cutter radius	rc	m		
Reference of setting whole depth			Outer	
Outer tooth depth	ho	m	2.2500	
Outer effective tooth depth	heo	mm	2	.0000
Outer addendum	hao	mm	1.0000	1.0000
Outer dedendum	hfo	mm	1.2500	1.2500
Reference of setting tooth thickness			Outer	
Outer transverse circular thickness	St	nm	1.5708	1.5708
Reference of setting cone angle			0.	ter .
Tip angle	δa	deg	31.65606	64.43514 .
Root angle	ôf	deg	24.80548	57.58456
Г	OK	Cancel	7	Clear

Fig.2.58 Dimension

Item	Symbol	Unit	Pinion	Gear
Material symbol			M90-44 👻	M90-44
M90 magnification		\times M90	****	M90-44 KT-20
Torque	Т	N•cm ▼	10.000 📃	GH-25
Rotational speed	n	rpm	300.000	Nylon
Number of load cycles	L		1000000	Î
Tangential velocity	٧	m/s	0.283	
Lubrication condition		G		ise
Temperature	Te	°C	60.000	
Overload factor	Ко		1	.000
Bending safety factor	SF		1	.200
Pitting safety factor	SH		1	.150
Modulus of elasticity	E	MPa	1721.067	1721.067


Fig.2.59 Strength dimension (resin gear)

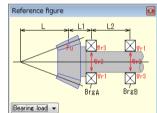

Plastic strength calculatio	n result [l	_ewis]		- • ×
Item(bending)	Symbol	Unit	Pinion	Gear
Allowable bending stress	σFlim	MPa	25.7780	26.6426
Tooth form factor	YF		0.5079	0.7153
Dynamic factor	Kv		1	.3977
Temperature factor	KT		0.6500	
Lubilicant factor	KL		1.0000	
Material quality factor	KM		0.7500	
Circumferential load	Ft	N	13.0719	
Allowable circumferential load	Ftlim	N	52.2927	76.1093
Bending stress	σb	MPa	6.4439	4.5759
Bending strength	Sft		4.0004	5.8224
Item(pitting)	Symbol	Unit	Pinion	Gear
Allowable contact stress	σHlim	MPa	54.7190	63.2217
Circumferential load	Fc	N	13.0719	
Allowable circumferential load	Fclim	N	29.6890	34.3023
Contact stress	σH	MPa	20.9500	20.9500
Pitting strength	Sfc		2.2712	2.6241

Fig.2.60 Strength result (resin gear)

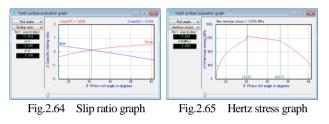
2.22 Bearing load

Load acting on teeth and bearings are calculated. Fig.2.61 shows a reference diagram of the load direction acting on the teeth and the bearing position. In Fig.2.62, bearing load is indicated by inputting torque and bearing distance.

(a) Direction of load acting on teeth (b)Bearing position Fig.2.61 Example picture

Item	Symbol	Unit	Pinion	Gear
Rotational direction			CCW 👻	CW
Torque	T	N•m →	25.000	68.750
Bearing support method		[Overl	nang
Cone apex \sim center of face width	L	mm	41.982	15.266
Bearing span1	L1	mm	30.0000	30.000
Bearing span2	L2	mm	30.0000	30.000
Load to tooth			📄 Display r	eference figu
Shaft thrust load	Fa	N	1326.301	291.960
Transverse load factor	Fu	N	1637.620	1637.620
Radial load	Fr	N	291.960	1326.301
Radial load to bearing A				
Radial load(total)	₩r	N	3276.504	3970.252
Radial load by Fa	₩r1	N	583.920	2652.603
Radial load by Fu	₩r2	N	3275.240	3275.240
Radial load by Fr	Wr3	N	674.913	408.566
Radial load to bearingB				
Radial load(total)	₩r	N	1681.800	1877.242
Radial load by Fa	Wr1	N	291.960	1326.301
Radial load by Fu	₩r2	N	1637.620	1637.620
Radial load by Fr	Wr3	N	674.913	408.566

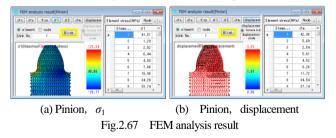
Fig.2.62 Bearing load


AMTEC INC.

2.23 Gear surface evaluation (optional)

After strength calculation, by inputting presence / absence of tooth profile modification, type of drive gear, number of calculation points in the tooth surface evaluation graph setting screen in Fig.2.63, slip ratio graph (Fig.2.64) and Hertz stress graph (Fig.2.65) will be displayed.

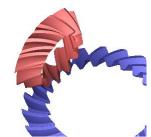
Fig.2.63 Surface evaluation graph

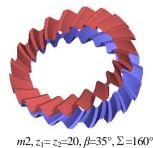


2.24 FEM tooth shape stress analysis (optional)

Five types of stress (σ_x , σ_y , shear stress τ , principal stress σ_1 , σ_2) can be calculated by inputting the longitudinal modulus of elasticity, Poisson's ratio, number of divisions, load position and load in the setting screen of FEM analysis as shown in Fig.2.66. Since the actual stress acting on the teeth can be evaluated together with the gear strength calculation, the reliability of the gear strength can be enhanced. Maximum principal stress σ_1 and displacement diagram are shown in Fig. 2.67.

Item	Symbol	Unit	Pinion	Gear	
Calculation point			Mean		
Material symbol			SCM420	SCM420	
Modulus of elasticity	E	MPa	206000.0	206000.0	
Poisson's ratio	ν		0.30	0.30	
Vertical division No.(face)	mNO		21	21	
Horizontal division No.	wNO		21	21	
Position of load point	Nf		2	2	
Load	F	N	16	37.6201	


Fig.2.66 FEM analysis setup



2.25 Gear drawing example

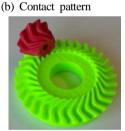
A tooth profile of spiral bevel gear outputting tooth lead at equal lead is shown in Fig.2.68, while an example of axis angle with 160° is shown in Fig.2.68. Even gears with a small number of teeth like differential bevel gear, it shows correct tooth contact because they are spherical involute tooth profiles.

An example of machining with a ball end mill using a tooth profile data is shown in Fig.2.71. Also, a photograph of a photo-fabrication model is shown in Fig.2.72.

*m*2, z_1 =12, z_2 =23, β =35°, Σ =90° Fig.2.68 Equi-lead spiral

Fig.2.69 Shaft angle 160° spiral

 $m1,z28, \alpha 20^{\circ}, \beta 35^{\circ}$ Fig.2.71 Gear manufacturing Fig.2.72 Photo-fabrication model


2.26 Special bevel gear

Although it is not a standard function of software, it is also pos sible to generate a tooth profile of a double spiral bevel gear as s hown in Fig.2.73. Please contact us for this tooth form.

(a)Rendering

(c) Processing example (d) Made by 3D printer Fig.2.73 Double spiral bevel gear

2.27 Process example of bevel Gear by machining center

 $m15, z65, a20^{\circ}, \beta=35^{\circ}, d=975.0$ (Provided by Mitsui Seiki Kogyo Co., Ltd.) HU80A-5X (JIMTOF2008) Fig.2.74 Spiral bevel gear manufacturing example

AMTEC INC. www.amtecinc.co.jp

D500 ($m5, z30, a20^\circ, \beta=0^\circ, d=150$) (Provided by Makino Mill Inc.) Fig.2.75 Straight bevel gear processing example

 $\begin{array}{l} m6, z22, \alpha 20^{\circ}, \beta {=} 35^{\circ}, d {=} 132 \\ \mbox{Intelligent multi-task machine : MULTUS B300C} \\ (\mbox{Provided by Okuma Co., Ltd.}) \\ \mbox{Fig.2.76} \quad \mbox{Spiral bevel gear manufacturing example} \end{array}$

YBMVi40 (m5, z20, $a20^{\circ}$, $\beta=35^{\circ}$, d=100.0) (Provided by Yasuda Kogyo Co., Ltd.) Fig.2.77 Spiral bevel gear manufacturing example

HERMLE C-50U ($m10, z47, \alpha 20^\circ, \beta=35^\circ, d=470$) (Provided by Aichi Sangyo Co., Ltd.) Fig.2.78 Spiral bevel gear manufacturing example

NMV3000 DCG (m4, z40, $a20^{\circ}$, $\beta=35^{\circ}$, d=160) (Provided by DMG Mori Seiki Co., Ltd.) Fig.2.79 Spiral bevel gear manufacturing example

(GMT-630, provided by Otori Kiko Co., Ltd.) Fig.2.80 Example of blisk processing